# 激光与光电子学进展

# 旋转对称非球面表述及其特点分析

刘锦琳,余飞鸿\*

浙江大学光电科学与工程学院,浙江 杭州 310027

**摘要** 在光学设计中,为了给光学系统的设计与优化提供更多的设计自由度,常常使用旋转对称非球面。旋转对称非球面的标准表达式通常为基准二次曲面与附加多项式的组合,附加多项式可以为偶次幂级数多项式、Zernike 多项式和Q型多项式等。鉴于此,推导基准二次曲面和基于不同附加多项式的非球面的表达式,对各类旋转对称 非球面的非球面系数和非球面表面斜率进行比较,利用设计实例来对比基于不同附加多项式的非球面在光学设计中的应用并指出各自的特点。结果表明,相比于其他非球面,基于Q型多项式的非球面能够更好地控制非球面的 面型,优化效率更高。

**关键词** 光学设计;非球面;旋转对称 中图分类号 TN201 **文献标志码** A

doi: 10.3788/LOP202158.0922001

# Descriptions of Rotationally Symmetric Aspheres and Analysis of Their Characteristics

#### Liu Jinlin, Yu feihong\*

College of Optical Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China

Abstract In optical design, to provide more design freedom for optical system design and optimization, a rotationally symmetric aspheric surface is often used. The standard expression for a rotationally symmetric aspheric surface is usually a combination of a base quadric surface and an additional polynomial, which can be an even-power-series polynomial, Zernike polynomial, or Q-type polynomial, among others. Hence, the expressions for the base quadric surface and aspheric surface based on different additional polynomials are derived, the aspheric coefficient and the slope of the aspheric surface of various rotationally symmetric aspheric surfaces are compared, and the application of an aspheric surface based on different additional polynomials in optical design is compared with design examples, and the characteristics of each aspheric surface are identified. The results show that, compared with other aspheric surfaces, the aspheric surface based on a Q-type polynomial can better control the surface shape of the aspheric surface based on a general surface.

Key wordsoptical design; aspherics; rotationally symmetricOCIS codes220. 1250; 220. 2740; 220. 3620

## 1引言

非球面透镜作为光学元件的重要组成部分之 一,在光学设计的早期就已逐步应用<sup>[1-3]</sup>。针对球面 透镜存在像差且难以校正的问题,以及当设计较复 杂或对成像质量要求高的系统时,往往使用非球面 透镜来获得更多的设计自由度、减少光学元件的数 量、简化光学系统结构以及更好地校正光学系统的

收稿日期: 2020-08-28; 修回日期: 2020-09-16; 录用日期: 2020-09-18 <sup>\*</sup>E-mail: feihong@zju.edu.cn 像差。

近年来,随着超精密加工和检测技术的发展, 在光学系统中使用更复杂的光学透镜面型得以成 为可能。目前,常用的非球面为旋转对称非球面, 并且在光学元件国际标准(ISO10110)的第十二部 分中规定了其标准二次曲面的表述<sup>[4]</sup>。

目前,最常用的旋转对称非球面为基于偶次幂 级数多项式的非球面<sup>[3]</sup>,其优点是表达式简单、设计 自由度高、更有利于校正像差以及提高光学系统的 像质。但由于其表达式中用于趋近基准二次曲面 的多项式中的各项间不是正交的,而且在优化过程 中随着多项式项数的增加,各项系数可能互相抵 消,造成误差的累积与有效数字的浪费,不利于设 计人员根据系数来调整面型。

当前,使用的成像光学系统通常以光轴旋转 对称,组成光学系统的成像元件及其光瞳都是圆 型的。Zernike多项式是在单位圆上连续的区域, 其各项间相互正交。从将Zernike多项式用于测试 透镜的相位<sup>[6]</sup>以来,由于Zernike多项式所具有的 正交性和对经典像差的平衡表示,使其在圆型光 瞳上具有最小的方差<sup>[79]</sup>,为此在光学领域中得到 了广泛的应用<sup>[10-13]</sup>。基于Zernike多项式的非球面 比其他非球面具有明显的优势:使用归一化的 Zernike多项式描述像差具有正交性,Zernike系数 值与附加多项式的数量无关,这种正交性意味着 可以添加任意数量的附加项,而且不会影响已经 计算出的项。

最近十几年由美国QED公司的Forbes博士<sup>[14]</sup> 提出了基于Q型多项式的非球面,其具有优化设计 效率高以及使非球面零件更易于加工和检测等方 面的优势<sup>[15-19]</sup>,目前已被成功应用在超短焦的全景 镜头<sup>[20]</sup>、双波段红外光学系统<sup>[21]</sup>、移动设备相机镜 头<sup>[22]</sup>、小畸变全景环带光学系统<sup>[23]</sup>和电子内窥镜物 镜光学系统<sup>[24]</sup>等设计中,有效提高了镜头的良品 率,获得了较好的设计效果。

本文研究旋转对称非球面的不同表述,并对 各类旋转对称非球面的系数、表面斜率以及在光 学设计中的应用进行比较与分析,指出各自的 特点。

2 坐标系与符号的一般规定

非球面的描述使用标准的右手直角坐标系,如 图1所示。以非球面的顶点作为原点,以坐标系的



图1 非球面的直角坐标系表示

Fig. 1 Cartesian coordinate system representation of aspheric surface

2轴作为光轴,方向从左向右。对于非球面表面上的任意一点,如果曲率中心在顶点的右侧,则半径为正;如果曲率中心在顶点的左侧,则半径为负。如果该表面点在顶点的右侧,则该点的矢量方向为正方向;如果该表面点在顶点的左侧,则该点的矢量方向为负方向<sup>[4]</sup>。

#### 3 旋转对称非球面的表达式

#### 3.1 基准二次曲面的表达式

假设一个旋转对称的非球面绕z轴旋转,则 满足

$$z_{t} = f\left(x_{t}^{2} + y_{t}^{2}\right)_{\circ} \tag{1}$$

本文以广义的二次曲面为基准旋转对称非球 面进行讨论<sup>[4]</sup>。根据图1和(1)式可知,基准二次曲 面的方程为

$$z_{t} = f\left(x_{t}, y_{t}\right) = c_{t} \frac{\frac{x_{t}^{2}}{a_{t}^{2}} + \frac{y_{t}^{2}}{b_{t}^{2}}}{1 + \sqrt{1 - \frac{x_{t}^{2}}{a_{t}^{2}} - \frac{y_{t}^{2}}{b_{t}^{2}}}}, \quad (2)$$

式中:*a*和*b*均为常数(可能为虚数,*a*<sup>2</sup>和*b*<sup>2</sup>为实数); *c*为一个实常数,可以表示为

$$a_{\rm t}^2/c_{\rm t}=R_{{\rm t},x},\qquad(3)$$

$$b_{\rm t}^2/c_{\rm t} = R_{\rm t,v},\tag{4}$$

$$K_{t,x} = \left(a_t^2/c_t^2\right) - 1,$$
 (5)

$$K_{\rm t,v} = (b_{\rm t}^2/c_{\rm t}^2) - 1,$$
 (6)

式中: $R_x$ 为xz面( $z_i=0$ )上非球面的半径; $R_y$ 为yz面 ( $z_i=0$ )上非球面的半径; $K_x$ 和 $K_y$ 均为二次曲面常 数。(2)式可以改写为

$$z_{t} = f(x_{t}, y_{t}) = \frac{\frac{x_{t}^{2}}{R_{t,x}} + \frac{y_{t}^{2}}{R_{t,y}}}{1 + \sqrt{1 - (1 + K_{t,x}) \left(\frac{x_{t}}{R_{t,x}}\right)^{2} - (1 + K_{t,y}) \left(\frac{y_{t}}{R_{t,y}}\right)^{2}}}$$
(7)

由(7)式可知,当 $z_t = f(x_t, y_t)$ 所表示的基准 二次曲面与 $x_t = 0$ 或 $y_t = 0$ 的平面相交时,则 $K_{t,x}$ 值 和 $K_{t,y}$ 值决定了截线的类型。不同 $K_t$ 值的基准二次 曲面截面如图2所示。



图 2 不同 K<sub>t</sub>值的基准二次曲面截面图

Fig. 2 Cross sections of reference quadric surfaces with different values of  $K_{\rm t}$ 

对特殊情况进行讨论,当 $R_t = R_{t,x} = R_{t,y}$ 和  $K_t = K_{t,x} = K_{t,y}$ 时,令 $h_t^2 = x_t^2 + y_t^2$ ,其中 $h_t$ 为曲面 上任意一点到光轴的垂直距离,则(7)式可以 写为

$$z_{t} = f(x_{t}, y_{t}) = \frac{h_{t}^{2}}{R_{t} + \sqrt{R_{t}^{2} - (1 + K_{t})h_{t}^{2}}}$$
(8)

将曲率 $\rho_t = 1/R_t$ 代入(8)式,可得到常用的绕 z轴旋转对称的基准二次曲面,表达式为

$$z_{t}(h_{t}) = f(x_{t}, y_{t}) = \frac{h_{t}^{2}\rho_{t}}{1 + \sqrt{1 - (1 + K_{t})h_{t}^{2}\rho_{t}^{2}}}$$
(9)

(9)式必须满足 $(1+K_t)h_t^2\rho_t^2 \leq 1_o$ 

#### 3.2 基于偶次幂级数多项式的非球面

对于一个旋转对称的非球面,其表达式由基 准二次曲面的多项式和表征非球面与基准二次 曲面偏离的附加多项式两部分组成。基准二次 曲面可以由(9)式来表示,同时(9)式也可以转 换<sup>[5]</sup>为

$$\rho_{\rm e} \left( 1 + K_{\rm e} \right) z_{\rm e}^2 - 2 z_{\rm e} + \rho_{\rm e} h_{\rm e}^2 = 0_{\circ} \qquad (10)$$

对于基于偶次幂级数多项式的非球面,其中表

征非球面与基准二次曲面偏离的附加多项式为偶 次幂级数多项式,增加更高阶的非球面多项式之 后,(10)式可以写为

$$\rho_{e} \left( 1 + K_{e} \right) \left[ z_{e} - \left( \sum_{m=2}^{M} A_{e,2m} h_{e}^{2m} \right) \right]^{2} - 2 \left[ z_{e} - \left( \sum_{m=2}^{M} A_{e,2m} h_{e}^{2m} \right) \right] + \rho_{e} h_{e}^{2} = 0 , \quad (11)$$

式中:A<sub>2m</sub>为非球面多项式的各项系数;M为非球面 多项式的最高次数。

因此,基于偶次幂级数多项式的非球面的表达 式可以写为

$$z_{e}(h_{e}) = \frac{h_{e}^{2}\rho_{e}}{1 + \sqrt{1 - (1 + K_{e})h_{e}^{2}\rho_{t}^{2}}} + A_{e,2m}h_{e}^{2m} \circ (12)$$

当 m=2,3,4,...,7、 $-1 \leq h_e \leq 1$  和  $-1 \leq A_{e,2m} h_e^{2m} \leq 1$ 时,基于偶次幂级数多项式的非球面附加多项式的曲线如图 3 所示。



图 3 基于偶次幂级数多项式的非球面附加多项式的曲线 Fig. 3 Curves of aspheric surface additive polynomials based on even power series polynomials

由于基于偶次幂级数多项式的非球面的表达 式简单,所以该非球面是应用广泛的非球面之一。 在实际的光学设计中,为了实现更多的设计自由 度,可以将更多的偶数项添加到附加多项式的展开 式中并进行优化设计。原则上,只要多项式的项数 足够多,这种表达方式可以对任意旋转对称的非球 面面型以任意精度逼近。为了更精确地表达所需 的非球面,需要的多项式项数将会越来越多,若已 知需要表征的非球面,只要确定其基准二次曲面的 表达式就可以运用最小二乘法来确定A<sub>e.2m</sub>的最佳 数值。但由于附加多项式没有实际的物理意义,也 不是正交多项式,而且在优化过程中系数的数值不稳定,往往出现系数符号正负交替的形式,如图4 所示。



图 4 基于偶次幂级数多项式的非球面附加多项式系数的 符号正负交替曲线

Fig. 4 Positive and negative sign alternating curves of aspheric surface coefficient of additional polynomial based on even power series polynomial

对于基于偶次幂级数多项式的非球面来说, 相同的非球面面型可能对应着几组数值和符号都 不同的系数,因此只能通过各项系数的相互抵消 来表征所需的非球面形状。附加多项式系数间的 互相抵消,一方面可能导致非球面的设计效率降 低,设计人员无法通过直接修改非球面系数来控 制非球面的面型;另一方面更容易导致非球面系 数出现四舍五入的误差,从而降低制造及测量的 效率。

由 Kross 等<sup>[25]</sup>实验研究结果表明,基于偶次幂 级数多项式的非球面在优化过程中,附加多项式的 系数 A<sub>e,2m</sub> 随实际焦距的变化很大,因此提出了新的 附加多项式系数 B<sub>e,2m</sub>,可表示为

$$B_{e^{2m}} = A_{e^{2m}} \rho_{e^{1-2m}}$$
(13)

由(13)式可以得到新的基于偶次幂级数多项 式的非球面表达式,即

$$z_{e}(h_{e}) = \frac{h_{e}^{2}\rho}{1 + \sqrt{1 - (1 + K_{e})h_{e}^{2}\rho_{e}^{2}}} + \frac{1}{\rho_{e}}\sum_{m=2}^{M}B_{e,2m}(h_{e}\rho_{e})^{2m}$$
(14)

非球面与基准二次曲面的偏离情况如图 5 所示,其中 $h_e$ 为非球面上任意一点到光轴的垂直距离, $C_0$ 为球心, $\varphi_e$ 为非球面上任意一点到球心 $C_0$ 的连线与光轴的夹角, $R_e$ 为非球面顶点处的半径。





从图5可以得到

$$h_{\rm e}\rho_{\rm e} = \frac{h_{\rm e}}{R_{\rm e}} = \sin\varphi_{\rm e\,\circ} \tag{15}$$

那么,(14)式也可以写成

$$z_{e}(h_{e}\rho_{e}) = \frac{1}{\rho_{e}} \left[ \frac{\left(h_{e}\rho_{e}\right)^{2}}{1 + \sqrt{1 - \left(1 + K_{e}\right)\left(h_{e}\rho_{e}\right)^{2}}} + \sum_{m=2}^{M} B_{e,2m}(h_{e}\rho_{e})^{2m} \right]_{\circ}$$
(16)

对于附加多项式的表达式,(14)式和(16)式将 (12)式中以h<sub>e</sub>扩展的偶次幂级数多项式转换成以  $\varphi_e$ 扩展的偶次幂级数多项式。当对光学系统的焦 距进行放大或缩小时,由于孔径角 $\varphi_e$ 具有不变性, 则附加多项式的系数不会随焦距的改变而改变,这 样一来非球面的表达式变得更稳定,该表达式的缺 点是不适用于顶点曲率为零的非球面(非球面半径 为无穷大)。

#### 3.3 基于Zernike多项式的非球面

任意一点  $P 在 单 位 圆 平 面 中 的 直 角 坐 标 P(x, y) 和极坐标 P(r, \theta) 如图 6 所示,其中 O 为极坐 标系的极点, r 为点 P 的极径, <math>\theta$  为逆时针方向 Oy 到 OP 的夹角,即极角。

任何连续的函数可以用一系列多项式来表示<sup>[26]</sup>,即

$$F(\mathbf{r},\theta) = \sum_{i} A_{i} f_{i}(\mathbf{r},\theta), \qquad (17)$$



图 6 任意一点 P 在单位圆平面中的直角坐标和极坐标 Fig. 6 Cartesian and polar coordinates of any point P in unit circle plane

式中: $f_i(\rho, \theta)$ 为单个多项式表示, $i=1,2,3,\dots$ 。多项式的正交性可表示为

$$\iint f_i(r,\theta) f_j(r,\theta) dr dr = \delta_{ij}, \qquad (18)$$

式中:δ<sub>ij</sub>为克罗内克函数,即二元函数;*j*=1,2, 3,…。当*i*值与*j*值相同时,如果积分中的两个多 项式相同,则积分结果恰好为1;如果积分中的两 个多项式不同,则积分结果为0。多项式的第一 个性质是正态性,即多项式被归一化;第二个性 质是正交性,因此将其指定为正交正态多项 式集。

为了描述已知的任意波阵面  $W(r, \theta)$ ,需要计 算各个多项式的系数  $A_i$ ,此处只需将  $W(r, \theta)$ 与单 个多项式 $f_i(r, \theta)$ 进行交叉积分,可以得到

$$\iint W(r,\theta) f_i(r,\theta) \, \mathrm{d}r \mathrm{d}\theta = \sum_i \delta_{ii} A_i, \tag{19}$$

$$\| W(r,\theta) f_i(r,\theta) dr d\theta = A_i \circ$$
<sup>(20)</sup>

因此,(20)式给出的积分可以确定任意系数。 系数A<sub>i</sub>表示每个多项式的项对波前误差贡献的多 少。实际上,由于多项式具有正交性,则每个分量 的幅度A<sub>i</sub>代表该分量贡献的方均根(RMS)值,因 此总方均根波前误差由各个系数的平方和的平方 根来表示,即

$$\langle W^{2}(r,\theta)\rangle = \iint W(r,\theta) * W(r,\theta) dr d\theta = \sum_{i} A_{i}^{2},$$
(21)

式中:(·)为加权平均值;\*为卷积符号。对于使用

Zernike 多项式来描述任意波阵面  $W(r, \theta)$ 的函数, 可以根据多项式 Z进行展开,该多项式 Z在整个圆 型的光瞳表面上是正交的,即

$$W(r,\theta) = \sum_{\alpha,\beta} C^{\beta}_{\alpha} Z^{\beta}_{\alpha}(r,\theta), \qquad (22)$$

式中:C为Zernike多项式的各项系数;Z为多项式函数; $\alpha$ 为极点角频率的系数; $\beta$ 为Zernike多项式的最大径向阶数。

因此, Zernike 多项式在极坐标系中( $X = r\sin\theta, Y = r\cos\theta$ )可以表示为

$$Z_{a}^{\beta}(r,\theta) \pm i Z_{a}^{-\beta}(r,\theta) = V_{a}^{-\beta}(r\cos\theta, r\sin\theta) = V_{a}^{\beta}(r)\exp(\pm im\theta), \qquad (23)$$

$$Z^{\beta}_{a}(r,\theta) = V^{\beta}_{a}(r)\cos m\theta, \qquad (24)$$

$$Z_{a}^{-\beta}(r,\theta) = V_{a}^{\beta}(r)\sin m\theta, \qquad (25)$$

式中: $V_{\alpha}^{\beta}(r)$ 为径向函数。对单位圆进行归一化,则径向坐标r的取值范围为 $0 \leq r \leq 1$ 。径向函数 $V_{\alpha}^{\beta}(r)$ 可表示为

$$V_{\alpha}^{\beta}(r) = \sum_{l=0}^{(\alpha-\beta)/2} \frac{(-1)^{l} (\alpha-l)!}{l! \left[\frac{1}{2} (\alpha+\beta) - l\right]! \left[\frac{1}{2} (\alpha-\beta) - l\right]!} r^{\alpha-2l}$$
(26)

Kross等<sup>[25]</sup>以二次曲面为基准曲面,将Zernike多项式作为附加多项式来描述旋转对称的非球面,该过程选择了极点角频率系数为4,最大径向阶数为2β的径向函数V<sup>4</sup><sub>22</sub>(r),即

$$V_{2\beta}^{4}(r) = \sum_{l=0}^{\beta-2} \frac{(-1)^{l} (2\beta - l)!}{l! (\beta + 2 - l)! (\beta - 2 - l)!} r^{2\beta - 2l}$$
(27)

由(27)式可以写出 $m = 2, 3, 4, \dots, 7$ 的径向函数 $V_{2m}^4(r)$ 的表达式,即

$$\begin{cases} V_{4}^{4}(r) = r^{4} \\ V_{6}^{4}(r) = -5r^{4} + 6r^{6} \\ V_{8}^{4}(r) = 15r^{4} - 42r^{6} + 28r^{8} \\ V_{10}^{4}(r) = -35r^{4} + 168r^{6} - 252r^{8} + 120r^{10} \\ V_{12}^{4}(r) = 70r^{4} - 504r^{6} + 1260r^{8} - 1320r^{10} + 495r^{12} \\ V_{14}^{4}(r) = -126r^{4} + 1260r^{6} - 4620r^{8} + 7920r^{10} - 6435r^{12} + 2002r^{14} \\ R_{4}_{4}(r) = -126r^{4} + 1260r^{6} - 4620r^{8} + 7920r^{10} - 6435r^{12} + 2002r^{14} \\ R_{4}_{4}(r) = -126r^{4} + 1260r^{6} - 4620r^{8} + 7920r^{10} - 6435r^{12} + 2002r^{14} \\ \end{cases}$$

$$z_{z}(h_{z}) = \frac{h_{z}^{2}\rho_{z}}{1 + \sqrt{1 - (1 + K_{z})h_{z}^{2}\rho_{z}^{2}}} + \frac{1}{\rho_{z}}\sum_{m=2}^{M}C_{z,2m}V_{z,2\beta}^{4}(r)_{\circ}$$
(29)

对 半 孔 径 进 行 归 一 化 , 即  $r = h_Z \rho_Z / h_{Z, max} \rho_Z = h_Z / h_{Z, max}$ ,其中 $h_{max}$ 为非球面到光轴

的最大垂直距离,即最大通光半孔径。 同样(16)式也可以写为

$$z_{z}(h_{z}\rho_{z}) = \frac{1}{\rho_{z}} \left[ \frac{\left(h_{z}\rho_{z}\right)^{2}}{1 + \sqrt{1 - \left(1 + K_{z}\right)\left(h_{z}\rho_{z}\right)^{2}}} + \sum_{m=2}^{M} C_{z,2m} V_{z,2\beta}^{4}(r) \right]_{\circ}$$
(30)

当 $m=2,3,4,...,7,-1 \le r \le 1\pi - 1 \le V_{Z,2m}^4(r) \le 1$ 时,Zernike多项式的径向函数 $V_{Z,2m}^4(r)$ 的函数曲线如图7所示。从图7可以看到,相比于基于偶次幂级数多项式的非球面,基于Zernike多项式的非球面的附加多项式为正交多项式,避免了附加多项式各项系数符号正负交替和互相抵消,而且在光学设计中具有一定的优势,能够更好地校正系统的像差。



图 7 Zernike 多项式的径向函数 V<sup>4</sup><sub>Z,2m</sub>(r)的函数曲线 Fig. 7 Curves of radial function V<sup>4</sup><sub>Z,2m</sub>(r) of Zernike polynomials

#### 3.4 基于Q型多项式的非球面

2007年,Forbes博士<sup>[14]</sup>提出以非标准的正交多项式来代替简单的幂级数多项式为基底的Q型非球面。Q型非球面分为两种,一种为强非球面Q<sub>con</sub>,另一种为温和非球面Q<sub>bfs</sub>。

3.4.1 强非球面

强非球面 Q<sub>con</sub>的表达式同样由基准二次曲面和 表征非球面与基准二次曲面偏离的附加多项式组 成。相比于其他非球面,这里使用正交化的Q型多项式 $Q_{\text{con},m}(r^2)$ 作为附加多项式。

Q<sub>con</sub>非球面与基准二次曲面如图 8 所示,其中 Δz<sub>con</sub>为Q<sub>con</sub>非球面与基准二次曲面的偏离量,可以 写为

$$\Delta z_{\rm con}(r) = r^4 \sum_{m=0}^{M} a_m Q_{{\rm con},m}(r^2)_{\circ} \qquad (31)$$



图8 Q<sub>con</sub>非球面与基准二次曲面的示意图

Fig. 8 Schematic of  $Q_{con}$  aspheric surface and reference quadric surface

$$z_{\rm con}(h_{\rm con}) = \frac{\rho h_{\rm con}^2}{1 + \sqrt{1 - (1 + K)\rho_{\rm con}^2 h_{\rm con}^2}} + r^4 \sum_{m=0}^{M} a_m Q_{\rm con, m}(r^2)_{\circ}$$
(32)

假设需要拟合 z<sub>con</sub> = f(h<sub>con</sub>)的曲面,在确定最 佳的拟合圆锥曲线之后,附加多项式的系数可以用 来最小化非球面与基准二次曲面偏离的方均根。

#### 研究论文

设定 $f(h_{con})$ 与(32)式中表征基准二次曲面的分量的 差值为 $g_{con}(h_{con})$ ,即

$$g_{\rm con}(h_{\rm con}) = f(h_{\rm con}) - \frac{\rho_{\rm con} h_{\rm con}^2}{1 + \sqrt{1 - (1 + K_{\rm con}) \rho_{\rm con}^2 h_{\rm con}^2}}$$
(33)

那么,实际的曲面与模拟的差值的最小值为

$$E_{\rm con}^{2}\left(a_{0}, a_{1}, \cdots, a_{M}\right) = \left\langle \left[g_{\rm con}\left(rh_{\rm con,\,max}\right) - r^{4}\sum_{m=0}^{M}a_{m}Q_{\rm con,\,m}\left(r^{2}\right)\right]^{2}\right\rangle_{\circ} \quad (34)$$

(34)式执行了最小二乘法。将 E<sup>2</sup><sub>con</sub>的梯度设为 0,可得到最佳系数的表达式,即

$$\sum_{m=0}^{M} G_{\operatorname{con},mn} a_{m} = b_{m}, \qquad (35)$$

式中: $b_m = \langle g_{con}(rh_{con, max})r^4 Q_{con, m}(r^2) \rangle_{\circ}$  Gram 矩阵 的元素可表示为  $G_{con, m} = \langle r^8 Q_{con, m}(r^2) Q_{con, m}(r^2) \rangle =$ 

$$\begin{aligned} \mathcal{E}_{\operatorname{con},mn} &= \left\langle r^8 Q_{\operatorname{con},m}(r^2) Q_{\operatorname{con},n}(r^2) \right\rangle = \\ &\int_0^1 Q_{\operatorname{con},m}(x^2) Q_{\operatorname{con},n}(r^2) x^4 \mathrm{d}x_\circ \qquad (36) \end{aligned}$$

因此,如果选择Jacobi多项式的特殊情况作为 基底,则Gram矩阵为对角矩阵,即

$$Q_{\text{con},m}(x) = P_{\text{con},m}^{(0,4)}(2x-1), \qquad (37)$$

式中: $P_m^{(0,4)}$ 为系数为0和4的正交化的Jacobi多项 式。 $Q_{con,m}(r^2)$ 是一组以 $a_m$ 为系数的m阶正交化 Jacobi多项式,该系列多项式的前6项可表示为

$$\begin{cases} Q_{\text{con},0}(r^2) = 1\\ Q_{\text{con},1}(r^2) = -(5-6r^2)\\ Q_{\text{con},2}(r^2) = 15 - 14r^2(3-2r^2)\\ Q_{\text{con},3}(r^2) = -\left\{35 - 12r^2\left[14 - r^2(21 - 10r^2)\right]\right\}\\ Q_{\text{con},4}(r^2) = 70 - 3r^2\left\{168 - 5r^2\left[84 - 11r^2(8 - 3r^2)\right]\right\}\\ Q_{\text{con},5}(r^2) = -\left\{126 - r^2\left\{1260 - 11r^2\left\{420 - r^2\left[720 - 13r^2(45 - 14r^2)\right]\right\}\right\}\right\}\end{cases}$$

Q<sub>con</sub>非球面附加多项式的正交基底曲线如图9 所示。从图9可以看到,当m取不同值时,不同的 Q<sub>con</sub>非球面附加多项式的正交基底是在同一个最大 值的基础上按比例缩小的,因此可以更好地控制各 项的系数。





Fig. 9 Curves of  $Q_{con}$  aspheric surface with additional polynomial orthogonal basis

由(38)式与(28)式对比可知, Q<sub>con</sub>非球面附加 多项式仅仅是修正后的Zernike多项式, 两者的关系 可表示为

$$r^4 Q_{\operatorname{con}, m}(r^2) = V^4_{\operatorname{con}, 2m}(r^2),$$
 (39)

$$a_m = C_{\operatorname{con}, 2m} / \rho_{\operatorname{con}} \circ \tag{40}$$

由(39)式和(40)式可以看到, $Q_{con}$ 非球面附加多项 式是将Zernike多项式中的 $u^4$ 从求和公式中分离出来, 附加多项式的 $a_m$ 与对应的Zernike多项式系数相关。 3.4.2 温和非球面

温和非球面 Qbis 的表达式由最佳拟合球面和表 征非球面与最佳拟合球面偏离的附加多项式组成 (最佳拟合球面为同时通过该非球面顶点和最大通 光口径边缘的球面),即 Qbis 非球面将其最佳拟合球 面作为基准的二次曲面。同样这里使用正交化的 Q型多项式 Qbis,m(r<sup>2</sup>)作为附加多项式。

 $Q_{bfs}$ 非球面与最佳拟合球面如图 10 所示,其中  $\Delta z_{bfs}$ 为  $Q_{bfs}$ 非球面与最佳拟合球面的偏离量。定义  $\Delta z_{bfs} = f(h_{bfs, max}), 则 Q_{bfs}$ 非球面最佳拟合球面的曲 率 $\rho_{bfs}$ 为

$$\rho_{\rm bfs} = 2f \left( h_{\rm max, \, bfs} \right) / \left[ h_{\rm max, \, bfs}^2 + f \left( h_{\rm max, \, bfs} \right)^2 \right]_{\circ} \quad (41)$$

Q<sub>bfs</sub>非球面与最佳拟合球面的偏离量 Δz<sub>bfs</sub>可以 写为

$$\Delta z_{\rm bfs}(r) = \frac{r^2 (1-r^2)}{\sqrt{1-\rho_{\rm bfs}^2 h_{\rm bfs}^2}} \sum_{m=0}^M a_m Q_{\rm bfs,m}(r^2) \, (42)$$

对于Qbfs非球面,其表达式为



图 10 Q<sub>bfs</sub>非球面与最佳拟合球面的示意图 Fig. 10 Schematic of Q<sub>bfs</sub> aspheric surface and best-fitting sphere

$$z_{bfs}(h_{bfs}) = \frac{\rho_{bfs}h_{bfs}^{2}}{1 + \sqrt{1 - \rho_{bfs}^{2}h_{bfs}^{2}}} + \frac{r^{2}(1 - r^{2})}{\sqrt{1 - \rho_{bfs}^{2}h_{bfs}^{2}}}$$
$$z\sum_{m=0}^{M} a_{m}Q_{bfs,m}(r^{2})_{\circ}$$
(43)

为了消除系数值对最佳拟合球面的影响,规定  $\Delta z_{bfs}$ 值在孔径的中心和边缘(即r=0和r=1)处为 0。通过将 $\Delta z_{bfs}$ 乘以光轴与最佳拟合球面局部法线 之间的夹角余弦,可以将 $\Delta z_{bfs}$ 转换为沿表面法线的 偏差,这个余弦因子恰好是出现在(42)式分母中的 平方根。偏离法线的斜率可以写为

$$k_m = \frac{\mathrm{d}}{\mathrm{d}r} \left[ r^2 \left( 1 - r^2 \right) Q_{\mathrm{bfs},m} \left( r^2 \right) \right]_{\circ} \qquad (44)$$

选择合适的 $Q_{\text{bfs},m}(r^2)$ 令 $k_m$ 正交,表达式为

$$\langle k_m(u)k_n(u)\rangle = \delta_{mn\circ}$$
 (45)

依据(45)式将Q<sub>bfs,0</sub>(r<sup>2</sup>)设为归一化的常数,每 个新的高阶多项式都正交于所有低阶多项式,并根 据等式对其进行归一化,因此Q<sub>bfs,m</sub>(r<sup>2</sup>)是一组以a<sub>m</sub> 为系数的m阶正交化Jacobi多项式,其前6项可表 示为

$$\begin{cases} Q_{bfs,0}(r^{2}) = 1 \\ Q_{bfs,1}(r^{2}) = \frac{1}{\sqrt{19}} (13 - 16r^{2}) \\ Q_{bfs,2}(r^{2}) = \sqrt{\frac{2}{95}} [29 - 4r^{2} (25 - 19r^{2})] \\ Q_{bfs,3}(r^{2}) = \sqrt{\frac{2}{2545}} \{207 - 4r^{2} [315 - r^{2} (577 - 320r^{2})]\} \\ Q_{bfs,4}(r^{2}) = \frac{1}{3\sqrt{131831}} \{7737 - 16r^{2} \{4653 - 2r^{2} [7381 - 8r^{2} (1168 - 509r^{2})]\}\} \\ Q_{bfs,5}(r^{2}) = \frac{1}{3\sqrt{6632213}} \{66657 - 32r^{2} \{28338 - r^{2} \{135325 - 8r^{2} [35884 - r^{2} (34661 - 12432r^{2})]\}\} \}$$

当*m*=0,1,2,…,5时,Q<sub>bb</sub>非球面附加多项式的正交基底曲线如图11所示。





Q型非球面相比于偶次多项式非球面的优势: 一方面附加多项式采用了正交基底,附加多项式的 各项系数对非球面面型的贡献不会互相抵消,为此 提高了优化的效率;另一方面(42)式引入了余弦因 子  $1/\sqrt{1-\rho_{bls}^2 h_{bls}^2}$ ,其将  $Q_{bls}$ 非球面对最佳拟合球面 的 偏离从沿光轴方向转换为沿法线方向<sup>[15]</sup>,且  $Q_{bls,m}(u^2)$ 是正交的多项式基底,从而  $Q_{bls}$ 非球面沿 法线偏离的方均根斜率 $K_{RMS}$ 为

$$K_{\text{RMS}} = \left\langle \left\{ \frac{1}{h_{\text{bfs, max}}} \frac{\mathrm{d}}{\mathrm{d}r} \left[ r^2 (1 - r^2) \sum_{m=0}^{M} a_m Q_{\text{bfs, m}}(r^2) \right] \right\} \right\rangle = \frac{1}{h_{\text{bfs, max}}^2} \sum_{m=0}^{M} a_m^2 \circ \tag{47}$$

由(47)式可以得到, Q<sub>bfs</sub>非球面沿法线偏离的方 均根斜率与附加多项式的系数和成正比。对于可 直接测试的表面, K<sub>RMS</sub>值与非球面干涉测量的干涉 条纹密度成正比,且通常要求干涉条纹密度小于传 感器的奈奎斯特频率<sup>[15]</sup>。这有利于设计人员在优 化过程中通过控制系数和Q<sub>bfs</sub>非球面的方均根斜率

#### 研究论文

来提高Q<sub>bfs</sub>非球面的加工和制造的良品率。当m=0,1,2,…,5时,Q<sub>bfs</sub>非球面附加多项式正交基底的 斜率函数曲线如图12所示。



图 12 Qbbs非球面附加多项式正交基底的斜率函数曲线 Fig. 12 Slope function curves Qbbs aspheric surface with additional polynomial orthogonal basis

4 基于不同附加多项式的非球面的 对比

#### 4.1 非球面系数的相互转换

对比两种基于幂级数的偶次非球面表达式,由 (12)式与(14)式可得

$$B_{2m} = A_{2m} \rho^{1-2m} \,_{\circ} \tag{48}$$

对比基于Zernike多项式的非球面表达式与基于Q型多项式的Qcm非球面表达式,可得

$$a_m = \frac{1}{\rho} C_{2m\circ} \tag{49}$$

对比基于幂级数的偶次非球面表达式与基于 Zernike 多项式的非球面表达式,并结合  $r = h_z \rho_z / h_{z,max} \rho_z = h_z / h_{z,max}$ ,可得

$$\begin{cases} A_{4} = \frac{1}{\rho_{z} h_{z,\max}^{4}} \left( C_{4} - 5C_{6} + 15C_{8} - 35C_{10} + 70C_{12} - 126C_{14} \right) \\ A_{6} = \frac{1}{\rho_{z} h_{z,\max}^{6}} \left( 6C_{6} - 42C_{8} + 168C_{10} - 504C_{12} + 1260C_{14} \right) \\ A_{8} = \frac{1}{\rho_{z} h_{z,\max}^{8}} \left( 28C_{8} - 252C_{10} + 1260C_{12} - 4620C_{14} \right) \\ A_{10} = \frac{1}{\rho_{z} h_{z,\max}^{10}} \left( 120C_{10} - 1320C_{12} + 7920C_{14} \right) \\ A_{12} = \frac{1}{\rho_{z} h_{z,\max}^{12}} \left( 495C_{12} - 6435C_{14} \right) \\ A_{14} = \frac{1}{\rho_{z} h_{z,\max}^{14}} \left( 2002C_{14} \right) \end{cases}$$
(50)

反之,可得

$$\begin{cases} C_{4} = \rho_{Z} \left( A_{4} h_{Z,\max}^{4} + \frac{5}{6} A_{6} h_{Z,\max}^{6} + \frac{5}{7} A_{8} h_{Z,\max}^{8} + \frac{5}{8} A_{10} h_{Z,\max}^{10} + \frac{5}{9} A_{12} h_{Z,\max}^{12} + \frac{1}{2} A_{14} h_{Z,\max}^{14} \right) \\ C_{6} = \rho_{Z} \left( \frac{1}{6} A_{6} h_{Z,\max}^{6} + \frac{1}{4} A_{8} h_{Z,\max}^{8} + \frac{7}{24} A_{10} h_{Z,\max}^{10} + \frac{14}{45} A_{12} h_{Z,\max}^{12} + \frac{7}{22} A_{14} h_{Z,\max}^{14} \right) \\ C_{8} = \rho_{Z} \left( \frac{1}{28} A_{8} h_{Z,\max}^{8} + \frac{3}{40} A_{10} h_{Z,\max}^{10} + \frac{6}{55} A_{12} h_{Z,\max}^{12} + \frac{3}{22} A_{14} h_{Z,\max}^{14} \right) \\ C_{10} = \rho_{Z} \left( \frac{1}{120} A_{10} h_{Z,\max}^{10} + \frac{1}{45} A_{12} h_{Z,\max}^{12} + \frac{1}{26} A_{14} h_{Z,\max}^{14} \right) \\ C_{12} = \rho_{Z} \left( \frac{1}{495} A_{12} h_{Z,\max}^{12} + \frac{1}{154} A_{14} h_{Z,\max}^{14} \right) \\ C_{14} = \rho_{Z} \left( \frac{1}{2002} A_{14} h_{Z,\max}^{14} \right) \end{cases}$$

$$(51)$$

#### 4.2 非球面的表面斜率

对于第3节所述的三类基于不同附加多项式的 非球面,表达式都是关于非球面上任意一点到光轴的 距离*h*的函数,因此对将*z*(*h*)对*h*求一阶偏导数,即可 得到非球面表面随h的变化率,即表面斜率<sup>[27]</sup>。三类 基于不同附加多项式的非球面的表达式都由基准二 次曲面与附加多项式两部分组成,因此主要对比了附 加多项式部分对h的一阶偏导数,结果如图13所示。



图 13 不同附加多项式对 h 的一阶偏导数曲线。(a)偶次幂级数多项式;(b) Zernike 多项式;(c) Q<sub>con</sub>多项式;(d) Q<sub>bfs</sub>多项式 Fig. 13 First-order partial derivative curves of different additional polynomial pairs with respect to *h*. (a) Even power series polynomial; (b) Zernike polynomial; (c) Q<sub>con</sub> polynomial; (d) Q<sub>bfs</sub> polynomial

从图 13 可以看到,基于偶次幂级数多项式的非 球面,当h>0时,其附加多项式部分即幂级数多项 式的各项系数呈单调递增,当h<0时呈单调递减, 最大值和最小值都趋于无穷,因此说明表面斜率受 h的影响较大;基于 Zernike 多项式的非球面,由于 其附加多项式为正交的 Zernike 多项式,附加多项式 部分的各项系数正负交替,即非球面局部表面变化 的方向可能不同,同时在一定程度上削弱了h对表 面斜率的影响;同样地,基于 Q型多项式的  $Q_{bfs}$ 非球 面与 $Q_{con}$ 非球面,其附加多项式都为正交多项式,所 以附加多项式部分的各项系数正负交替,其中 $Q_{bfs}$ 

#### 4.3 非球面在光学设计中的应用

以经典的库克三片式为初始结构,使用三种基 于不同附加多项式的非球面来优化三片式镜头,其 中各结构的第一片与第二片均为球面玻璃镜片,第 三片为非球面塑料镜片。为了体现不同非球面在 光学设计中的应用,实验使用控制变量法。各结构 的总长均为12 mm,焦距均为10 mm,视场角均为 40°。在优化过程中,第一片与第二片的球面玻璃镜 片的半径与厚度以及各镜片的间距均保持不变,只 改变第三片非球面塑料镜片的厚度以及非球面的 形式。使用的非球面分别为基于偶次幂级数多项 式的非球面、基于 Zernike 多项式的非球面、基于 Q型多项式的Qbs非球面与Qcon非球面,并且对于所 有非球面的附加多项式均只有第一阶系数到第四 阶系数为变量。优化得到的基于偶次幂级数多项 式的非球面与基于 Zernike 多项式的非球面的镜头 结构与点列图如图 14 所示。

从图 14(a)可以看到,当使用优化的基于偶次 幂级数多项式的非球面时,第三片塑料非球面镜 片边缘处的表面斜率变化较大,为此非球面面型 有不规则的变化,该变化可能会导致非球面的后 续加工与测量产生一定的误差;但基于幂级数多 项的偶次非球面的附加多项式不是正交的,所以 设计者无法通过直接改变非球面的系数来改善非 球面的面型,因此在设计过程中存在不便之处。 从图 14(c)可以看到,当使用优化的基于 Zernike 多项式的非球面时,由于附加多项式为正交的 Zernike 多项式,第三片塑料非球面镜片边缘处的 表面斜率变化较小,非球面面型比较规则。对比 图 14(b)与图 14(d)的点列图可知,两种镜头结构 的像质差异较小。

图 15为基于Q型多项式的Q<sub>con</sub>非球面的镜头结 构与点列图。从图 15(a)可以看到,第三片塑料非 球面镜片边缘处的非球面面型也有不规则的变化, 但基于Q型多项式的Q<sub>con</sub>非球面的附加多项式为正 交多项式,且在光学设计软件Code V中,可以通过 特殊约束Q<sub>con</sub>非球面的方均根下陷偏离来控制Q<sub>con</sub> 非球面与其基准二次曲面的偏离程度,从而改善非



- 图 14 镜头结构图与点列图。(a)基于偶次幂级数多项式的非球面的镜头结构;(b)基于偶次幂级数多项式的非球面的点列图; (c)基于 Zernike 多项式的非球面的镜头结构;(d)基于 Zernike 多项式的非球面的点列图
- Fig. 14 Lens structure drawing and spot diagram. (a) Lens structure of aspheric surface based on even power series polynomials; (b) spot diagram of aspheric surfaces based on even power series polynomials; (c) lens structure of aspheric surface based on Zernike polynomials; (d) spot diagram of aspheric surface based on Zernike polynomials; (d) spot diagram of aspheric surface based on Zernike polynomials; (d) spot diagram of aspheric surface based on Zernike polynomials; (d) spot diagram of aspheric surface based on Zernike polynomials; (d) spot diagram of aspheric surface based on Zernike polynomials; (d) spot diagram of aspheric surface based on Zernike polynomials; (d) spot diagram of aspheric surface based on Zernike polynomials; (d) spot diagram of aspheric surface based on Zernike polynomials; (d) spot diagram of aspheric surface based on Zernike polynomials; (d) spot diagram of aspheric surface based on Zernike polynomials; (d) spot diagram of aspheric surface based on Zernike polynomials; (d) spot diagram of aspheric surface based on Zernike polynomials; (d) spot diagram of aspheric surface based on Zernike polynomials; (d) spot diagram of aspheric surface based on Zernike polynomials; (d) spot diagram of aspheric surface based on Zernike polynomials; (d) spot diagram of aspheric surface based on Zernike polynomials; (d) spot diagram of aspheric surface based on Zernike polynomials; (d) spot diagram of aspheric surface based on Zernike polynomials; (d) spot diagram of aspheric surface based on Zernike polynomials; (d) spot diagram of aspheric surface based on Zernike polynomials; (d) spot diagram of aspheric surface based on Zernike polynomials; (d) spot diagram of aspheric surface based on Zernike polynomials; (d) spot diagram of aspheric surface based on Zernike polynomials; (d) spot diagram of aspheric surface based on Zernike polynomials; (d) spot diagram of aspheric surface based on Zernike polynomials; (d) spot diagram of aspheric surface based on Zernike polynomials; (d) spot diagram of aspher



图 15 基于 Q 型多项式的 Q<sub>con</sub>非球面的镜头结构与点列图。(a)初始镜头结构;(b) 初始点列图;(c)控制方均根下陷偏离的 镜头结构;(d) 控制方均根下陷偏离的点列图

Fig. 15 Lens structure and spot diagram of Q<sub>con</sub> aspheric surface based on Q-type polynomials. (a) Initial lens structure; (b) initial spot diagram; (c) lens structure to control deviation of RMS sag; (d) point diagram to control deviation of RMS sag

球面的面型。控制方均根下陷偏离后得到的镜头 结构与点列图如图15(c)和图15(d)所示。从图15(c) 和图15(d)可以看到,第三片塑料非球面镜片在镜 片边缘处的面型更加规则,更有利于非球面的后续 加工与测量。

图 16 为基于 Q 型多项式的 Q<sub>bfs</sub>非球面的镜头结



图 16 基于 Q 型多项式的 Q<sub>bis</sub>非球面的镜头结构与点列图。(a)初始镜头结构;(b)初始点列图;(c)控制方均根斜率的镜头结构; (d)控制方均根斜率的点列图

Fig. 16 Lens structure and spot diagram of Q<sub>bfs</sub> aspheric surface based on Q-type polynomials. (a) Initial lens structure;
(b) initial spot diagram; (c) lens structure to control deviation of RMS sag; (d) point diagram to control deviation of RMS sag

构与点列图。从图 16(a)可以看到,优化过程中, 第三片塑料非球面镜片边缘处的非球面面型同样 可能出现不规则的变化。基于Q型多项式的Qbfs 非 球面的附加多项式为正交多项式,且在光学设计软 件 Code V 中,可以通过特殊约束Qbfs 非球面的方均 根斜率偏离,即(47)式中的K<sub>RMS</sub>来控制其非球面与 基准二次曲面偏离的方均根斜率,从而改善非球面 的面型。控制非球面的方均根斜率偏离得到的镜 头结构与点列图如图 16(c)和图 16(d)所示。从 图 16(c)和图 16(d)可以看到,控制非球面的方均根 斜率偏离在一定程度上改善了第三片塑料非球面 镜片在边缘处的非球面面型,同时保证其像质没有 明显下降。

图 17 为第三片塑料非球面在不同多项式下 的面型。从图 17 可以看到,基于Q型多项式的 非球面相比于其他非球面,在光学设计中能够更 方便地控制非球面的面型,因此具有一定的优 势。基于Q型多项式的非球面同样可以利用单 点金刚石超精密车床来加工,再结合 MATLAB 软件与非球面轮廓仪对加工好的非球面进行 测量<sup>[28]</sup>。



- 图 17 第三片塑料非球面面型对比。(a)基于偶次幂级数多 项式的非球面;(b)基于 Zernike 多项式的非球面; (c)基于 Q型多项式的 Q<sub>con</sub>非球面;(d)控制方均根下 陷偏离的基于 Q 型多项式的 Q<sub>con</sub>非球面;(e)基于 Q型多项式的 Q<sub>bb</sub>非球面;(f)控制非球面方均根斜率 的基于 Q 型多项式的 Q<sub>bb</sub>非球面
- Fig. 17 Third piece of plastic aspheric surface contrast.
  (a) Aspheric surface based on even power series polynomials; (b) aspheric surface based on Zernike polynomials; (c) Q<sub>con</sub> aspheric surface based on Q-type polynomials; (d) Q<sub>con</sub> aspheric surface based on Q-type polynomial for controlling RMS sag deviation; (e) Q<sub>bfs</sub> aspheric surface based on Q-type polynomials; (f) Q<sub>bfs</sub> aspheric surface based on Q-type polynomial to controlling RMS slope of aspheric surface

### 5 结 论

本文介绍旋转对称非球面的不同描述并对不 同旋转对称非球面进行对比及特点分析。旋转对 称非球面的标准表达式通常为基准二次曲面与附 加多项式的组合,本文主要介绍基于不同附加多项 式的非球面。一是基于偶次幂级数多项式的非球 面,其表达式简单,但在优化过程中附加多项式的 系数间会互相抵消,导致设计、制造及测量的效率 降低。若对表达式进行简单的改进,以非球面上任 意一点到光轴的垂直距离 h 扩展的偶次幂级数多项 式转换成以孔径角φ扩展的偶次幂级数多项式,由 于孔径角φ所具有的不变性,附加多项式的系数不 会随焦距的改变而改变,所以非球面的表达式更稳 定。二是基于 Zernike 多项式的非球面,使用正交化 的Zernike多项式作为附加多项式,可以避免附加多 项式各项系数的符号正负交替和互相抵消,能够更 好地校正系统的像差。三是基于Q型多项式的非 球面,其附加多项式同样为正交多项式。Q.,非球 面的附加多项式是对Zernike多项式的简单改进,附 加多项式的系数与对应的Zernike多项式系数相关。 Q<sub>bfs</sub>非球面引入将 Q<sub>bfs</sub>非球面对最佳拟合球面的偏 离从沿光轴方向转换为沿法线方向的余弦因子,因 此Q<sub>bb</sub>非球面沿法线偏离的方均根斜率与附加多项 式的系数和成正比。优化过程中,通过光学设计软 件 Code V 中的特殊约束来控制 Qcon 非球面的方均 根下陷偏离和Q<sub>bs</sub>非球面的方均根斜率,可以提高 光学设计的优化效率,同时提高Q型非球面的加工 和制造的良品率。本文对以上三类基于不同附加 多项式的非球面系数进行相互转换,比较基于不同 附加多项式非球面表面的斜率及其在光学设计中 的应用。总之,在实际光学设计的优化过程中,可 以根据不同非球面的特性和实际的设计需求来选 择不同表达式的非球面并进行优化。

#### 参考文献

- [1] Wassermann G D, Wolf E. On the theory of aplanatic aspheric systems [J]. Proceedings of the Physical Society Section B, 1949, 62(1): 2-8.
- [2] Miyamoto K. On the design of optical systems with an aspheric surface[J]. Journal of the Optical Society of America, 1961, 51(1): 21-22.
- [3] Lawson W D. Aspheric optics [J]. Physics in Technology, 1981, 12(2): 77-78.

- [4] Association K S. Optics and photonics-preparation of drawings for optical elements and systems-Part 12: Aspheric surfaces ISO10110-12: 2007 [S]. Geneva: ISO, 2007.
- [5] Greynolds A W. Superconic and subconic surface descriptions in optical design [J]. Proceedings of SPIE, 2002, 4832: 1-9.
- [6] Zernike F. Diffraction theory of the knife-edge test and its improved form: the phase-contrast method[J]. Journal of Micro-Nanolithography MEMS and MOEMS, 2002, 1(2): 87-94.
- [7] Born M, Wolf E. Principles of optics [M]. 7th ed. New York: Oxford University Press, 1999: 17.
- [8] Mahajan V N. Zernike polynomials and aberration balancing [J]. Proceedings of SPIE, 2003, 5173: 517302.
- [9] Lakshminarayanan V, Fleck A. Zernike polynomials: a guide[J]. Journal of Modern Optics, 2011, 58(7): 545-561.
- [10] Zheng Z R, Sun X T, Liu X, et al. Design of reflective projection lens with Zernike polynomials surfaces[J]. Displays, 2008, 29(4): 412-417.
- [11] Mahajan V N, Aftab M. Systematic comparison of the use of annular and Zernike circle polynomials for annular wavefronts [J]. Applied Optics, 2010, 49 (33): 6489-6501.
- [12] Liu J, Miao E L, Sui Y X, et al. Phase only pupil filter design using zernike polynomials[J]. Journal of the Optical Society of Korea, 2016, 20(1): 101-106.
- [13] Rahbar K, Faez K, Kakhki E A. Phase wavefront aberration modeling using Zernike and pseudo-Zernike polynomials [J]. Journal of the Optical Society of America A, 2013, 30(10): 1988-1993.
- [14] Forbes G W. Shape specification for axially symmetric optical surfaces [J]. Optics Express, 2007, 15(8): 5218-5226.
- [15] Forbes G W. Manufacturability estimates for optical aspheres[J]. Optics Express, 2011, 19(10): 9923-9942.
- [16] Forbes G W. Characterizing the shape of freeform optics [J]. Optics Express, 2012, 20 (3): 2483-2499.
- [17] Forbes G W. Robust, efficient computational methods for axially symmetric optical aspheres [J]. Optics Express, 2010, 18(19): 19700-19712.
- [18] Forbes G W. Robust and fast computation for the polynomials of optics[J]. Optics Express, 2010, 18 (13): 13851-13862.

#### 第 58 卷 第 9 期/2021 年 5 月/激光与光电子学进展

- [19] Forbes G W. Fitting freeform shapes with orthogonal bases [J]. Optics Express, 2013, 21(16): 19061-19081.
- [20] Zheng W, Lin F. Application of *Q*-type asphere in the design of super short-focus panoramic lens [J]. Acta Photonica Sinica, 2012, 41(11): 1317-1320.
  郑玮,林峰.*Q*-type非球面技术在超短焦全景镜头设 计中的应用[J].光子学报, 2012, 41(11): 1317-1320.
- [21] Jia M, Xue C X. Design of dual-band infrared optical system with Q-type asphere[J]. Acta Optica Sinica, 2019, 39(10): 1022001.
  贾孟,薛常喜.基于Q-type非球面的双波段红外光学系统设计[J].光学学报, 2019, 39(10): 1022001.
- [22] Ma B, Sharma K, Thompson K P, et al. Mobile device camera design with Q-type polynomials to achieve higher production yield[J]. Optics Express, 2013, 21(15): 17454-17463.
- [23] Zhou X D, Bai J. Small distortion panoramic annular lens design with Q-type aspheres [J]. Acta Optica Sinica, 2015, 35(7): 0722003.
  周向东,白剑.Q-Type非球面小畸变全景环带光学 系统设计[J].光学学报, 2015, 35(7): 0722003.

[24] Li C, Xue C X, Yang H F, et al. Optical system design of electronic endoscope objective with Q-type aspheres [J]. Acta Optica Sinica, 2017, 37 (6): 0622001.
李闯,薛常喜,杨红芳,等.基于Q-type非球面的电

子内窥镜物镜光学系统设计[J].光学学报,2017, 37(6):0622001.

- [25] Kross J, Oertmann F W, Schuhmann R. On aspherics in optical systems [J]. Proceedings of SPIE, 1986, 0655: 300-309.
- [26] Stephen R. Optical engineering science [M]. New York: John Wiley & Sons Ltd, 2020: 95-109.
- [27] Schuhmann R. Description of aspheric surfaces [J]. Advanced Optical Technologies, 2019, 8 (3/4): 267-278.
- [28] Jia M, Xue C X, Li C, et al. Q-type asphere testing technology based on MATLAB and aspheric profilometer[J]. Laser & Optoelectronics Progress, 2019, 56(15): 151201.
  贾孟,薛常喜,李闯,等.基于MATLAB与非球面 轮廓仪的 Q-Type非球面检测技术[J]. 激光与光电 子学进展, 2019, 56(15): 151201.